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Abstract

This paper presents a computational approach proposed
as part of the George B. Moody PhysioNet Challenge
2023. This method uses electroencephalograms (EEGs)
to predict the neurological recovery of patients following
cardiac arrest and was proposed by the team Oldenburg.
It relies on computing a set of low-level time-varying fea-
tures from a small subset of the available EEG channels.
The resulting sequence of features are input to a recurrent
neural network based on long short-term memory (LSTM)
cells that estimates the probability of the target patient to
be in a given cerebral performance category (CPC) status.
The resulting model received a Challenge score of 0.025
(ranked 36th out of 36 submissions) on the hidden test set,
failing to produce satisfying detection with a false positive
rate inferior to 0.05, as required by the Challenge score.
However, results on the validation set suggest that the pro-
posed method could yield useful results, though more thor-
ough tuning and evaluation would be needed.

1. Introduction

This paper describes a method submitted to the 2023
George B. Moody PhysioNet Challenge. The aim of this
challenge was to to develop automated methods able to
predict the outcome of patients being comatose after a
cardiac arrest, potentially helping clinicians to predict the
neurological recovery of patients. The developed meth-
ods were to use long-term electroencephalogram (EEG)
recordings, along with additional signals and patient in-
formation as input [1, 2]. All development, training and
testing were done using the data provided as part of the
challenge [3].

The development decision of the proposed method was
guided by two main objectives. First, the desire to explore
the feasibility of a classification based only on a small
number of electrodes and on a small-sized model. This
could facilitate the development of compact sensors and
be useful for a wide range of applications. Second, and

more pragmatic, the necessity for this approach to be im-
plemented and tested using the limited time and computing
resources available within the challenge’s timeframe.

Within these objectives, the proposed method only use
EEG signals as input, disregarding both the other recorded
vital parameters (e.g., electrocardiogram) and patients in-
formation (e.g, age). Additionally, only a small subset of
the available channels of the recorded EEG signals are
used as input. These signals are divided into overlap-
ping frames from which low-level features are extracted.
These features, and the parameters used to compute them,
were chosen for their proven usefulness in previous vital-
parameter classification tasks [4, 5]. Aiming at predict-
ing the probability of each cerebral performance category
(CPC) status for a given patient, the resulting sequence
of feature vectors are input to a recurrent neural network
(RNN) of long short-term memory (LSTM) cells, that can
take the time dependency of these features into account.
The hyper-parameters of this network were set according
to previous use on various applications, namely different
types of regression from audio signals [6, 7]. This choice
was motivated by the need to be applicable to time-variant
data while being robust against missing data. The pre-
dicted status of the patient and its CPC scores is computed
from the probabilities that are estimated by the network.

The remainder of this paper is structured as follows.
First, the proposed method is described in Section 2. The
experimental setup, detailing the used settings, as well as
the obtained results are presented in Section 3. Discussion
on the method and results are presented in Section 4.

2. Proposed approach

2.1. Feature extraction

The proposed method computes features from the signal
ym(n) of length N and sampling frequency fs, where m
and n denote the channel and sample index, respectively.
This signal is obtained by filtering, resampling and aver-
aging the input EEG. The filtering consists of a bandpass
filter with cut-off frequencies blow and bhigh, and of a zero-
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phase notch filter centred around the utility frequency butil.
It can be noted that all signals were made to have the same
length N . In presence of missing data, at any point of the
recording, missing samples were replaced by NaN values.

The filtered input is resampled to the sampling fre-
quency fs before applying:

y0(n) = yF3(n) + yP3(n), (1)
y1(n) = yF4(n) + yP4(n), (2)

where yF3(n) denotes the filtered and resampled input
from electrode F3, and yP3(n), yF4(n) and yP4(n) are
defined similarly.

The signal ym(n) is divided into L frames of length
W overlapping by O samples, i.e, with an hop size of
R =W −O. In each frame, and for each channel, F low-
level features are computed. The list of features and their
computation is summarised in Table 1, where e(k, `) de-
notes the k-th feature extracted from the `-th frame while
IP(·) denotes the probability operator and Q0.75 (·) the 75-
th percentile. In each frame, peaks are detected and the
standard deviation of the interval between peaks, the root
mean square (RMS) of the difference between successive
peaks and the number of peaks separated by less than
50 ms are added to the the features. These features are con-
catenated into a feature vector e` of length M ·F , for each
frame. The ordered sequence of these vectors is used as
input to the predicting function that relies on a RNN with
LSTM cells.

2.2. Predicting function

The previously described feature extraction results in a
sequence of L vectors. Due to the padding of signals with
NaN values, some of these vectors do contains invalid val-
ues. In order to ignore them, the proposed method first
process the whole sequence through a so-called masking
layer. Vectors containing invalid values will be ignored
during both training and prediction, only the L̃ valid vec-
tors are used for each signal. Hence, the predicting func-
tion uses the sequence of L̃ ≤ L vectors e` as input to
predict a vector p of probabilities,

p = [p1, p2, p3, p4, p5], with

5∑
c=1

pc = 1, (3)

where 0 ≤ pc ≤ 1 denotes the estimated probability that
the target patient was assigned a CPC score equals to c.
For this purpose, the predicting function is implemented
as a two layers RNN composed of LSTM cells, with a fi-
nal output layer implemented as a dense layer with a soft-
max activation function. The roles of these layers is more
formally described in the remainder of this subsection.

RNNs is a common extension of the conventional feed-

e(`, 0 +mF ) = min0≤n<W (ym(`R+ n))

e(`, 1 +mF ) = max0≤n<W (ym(`R+ n))

e(`, 2 +mF ) = 1
W

∑W−1
n=0 ym(`R+ n)

e(`, 3 +mF ) = median0≤n<W (ym(`R+ n))

e(`, 4 +mF ) =
√

1
W

∑W−1
n=0 (ym(`R+ n)− e(`, 2 +mF ))2

e(`, 5 +mF ) = e(`, 4 +mF )2

e(`, 6 +mF ) = E
{
(y − e(`, 4 +mF ))4

}
e(`, 7 +mF ) = E

{
(y − e(`, 4 +mF ))5

}
e(`, 8 +mF ) =

E{(y−e(`, 4+mF ))3}
e(`, 4+mF )3

e(`, 9 +mF ) =
E{(y−e(`, 4+mF ))4}

e(`, 4+mF )4

e(`, 10 +mF ) =
√

1
W

∑W−1
n=0 ym(`R+ n)2

e(`, 11 +mF ) = Q0.75 (y)−Q0.25 (y)

e(`, 12 +mF ) =
∑W−1

n=0 ym(`R+ n)

e(`, 13 +mF ) = e(`, 1 +mF )− e(`, 0 +mF )

e(`, 14 +mF ) = −
∑W−1

n=0 IP(ym(`R+ n)) log2 IP(ym(`R+ n))

e(`, 15 +mF ) = 1
L

∑L−1
k=0 |Ym(k, `)|2

e(`, 16 +mF ) = 1
L

∑L−1
k=0 |Ym(k, `)|

e(`, 17 +mF ) = median0≤k<L (|Ym(k, `)|)

Table 1: Summary of the low-level features extracted from
each frame, not including features based on peak detection.

forward artificial neural network (ANN). In a conventional
feed-forward ANN, each λ-th layer applies a non linear
mapping between input and output vectors, whereas the
input of the λ-th RNN layer is an ordered sequence Xλ of
Tλ input vectors xλt , where t ∈ [0, Tλ − 1] denotes the
sequence index, i.e.,

Xλ =
{

xλ0 ,x
λ
1 , · · · ,xλTλ−1

}
. (4)

Each layer of an RNN computes a sequence Hλ of hid-
den vectors hλt of length Lλh and a sequence Zλ of output
vectors zλt of length Lλz , both containing Tλ vectors and
defined similarly as in (4). The vectors in these sequences
are computed by iteratively applying

hλt = F
(
Wλ

x,hxλt + Wλ
h,hhλt−1 + bλh

)
, (5)

zλt = F
(
Wλ

h,zhλt + bλz
)
, (6)

where Wλ
x,h, Wλ

h,h and Wλ
h,z denote weight matrices of size

Lλh×Lλx , Lλh×Lλh and Lλz×Lλh , respectively, and where bλh
and bλz are bias vectors of length Lλh and Lλz , respectively.

Applied to the prediction of the probability vector de-
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scribed in (3) from EEG signals, RNN have several ad-
vantages. On top of being able to take into account the
temporal dependencies of the input, RNN can be applied
to sequences of arbitrary length and therefore output pre-
diction at different moments in the patient care. Addition-
ally, in combination with the use of a masking layer, they
are still able to output a prediction in presence of missing
data. However, the values of the weight matrices and of
the bias vectors still have to be learned during a training
phase and the formulation in (5) and (6) can cause insta-
bility during training, leading to overly long training time
or even divergence [8]. In order to avoid these issues, the
so-called gated units of LSTM layers are used in our ap-
proach.

Though in a standard RNN layer, the function F (·)
in (5) is commonly a simple non-linear function such as
a sigmoid, in an LSTM layer, this function relies on iter-
ative updates of sequences of vectors, Iλ, Oλ, Fλ and Cλ,
the so-called, input gate, output gate, forget gate and cell
memory. For each step t of the input sequence Xλ, the vec-
tors iλt and fλt are computed from the input vector xλt and
from the memory cell vector cλt−1 saved at the previous
step, i.e.,

iλt = S
(
Wλ

x,ix
λ
t + Wλ

h,ih
λ
t−1 + Wλ

c,ic
λ
t−1 + bλi

)
, (7)

fλt = S
(
Wλ

x,fx
λ
t + Wλ

h,fh
λ
t−1 + Wλ

c,fc
λ
t−1 + bλf

)
, (8)

where S (·) denotes the logistic sigmoid function. The re-
sulting vectors iλt and fλt weight the influence of the current
and previous input, respectively, to the updated vector cλt
computed as

cλt = fλt cλt−1 + iλt tanh
(
Wλ

x,cxλt + Wλ
h,chλt−1 + bλc

)
. (9)

The influence of this memory cell vector cλt to the layer
output is weighted by the output gate oλt computed as

oλt = S
(
Wλ

x,oxλt + Wλ
h,ohλt−1 + Wλ

c,ocλt + bλo
)
, (10)

and used to compute the hidden vector hλt ,

hλt = oλt tanh
(
cλt
)
, (11)

from which the output vector zλt is finally computed as
per (6).

In this application, the prediction function uses two
LSTM layers, hence, the input to the first layer is,

X0 =
{

e0,e1, · · · eL̃−1

}
, (12)

and updates defined by equations (7) to (11) are applied
to compute,

X1 =
{

z00, z
0
1, · · · z0L̃−1

.
}

(13)

and the same updates are applied this sequence. The last
vector z1

L̃−1
of the resulting sequence is used as input to

the third and last layer, defined as a dense layer with a
softmax activation function, i.e.,

p = z2 = F
(

W2
x,zz1

L̃−1 + b2
z

)
, (14)

where F (·) denotes the softmax activation function. Fi-
nally, the predicted CPC score is computed from p as,

CPC score =

5∑
c=1

c · pc, (15)

and the probability of a poor outcome as
∑5
c=3 pc. The

expected outcome is labeled as Poor if this probability is
higher than 0.5, and as Good, otherwise.

3. Experiments

3.1. Setup and parameters

The proposed method is implemented using Keras and
all patients included in the training data were used. When
reporting results (see next subsection) on the validation
and test sets, for which training and evaluation were done
by the challenge team, all of these patients were used for
training and testing was done on data only available to the
organizers. When reporting results on the training data, 5-
fold cross-validation was used. In this case, patients in the
training sets were separated into 5 non overlapping groups.
Each group was alternatively used for testing while the oth-
ers were used for training. Results are computed from the
prediction obtained on all folds.

The parameters were set as fs =128 Hz while blow,
blow, and butil are set to 0.1, 30 and 50 Hz, respectively.
Signals had a length N = 72·3600· fs, and frames of
length W = 60 ·fs were used with 50% of overlap. Both
LSTM layers had the same size, L0

h = L1
h= 128. In all

cases, training was done using the Adam optimizer [9]
for 50 epochs with a batch size of 4 (patients), aiming to
minimize the cost function, set as the categorical cross-
entropy between the predicted probability and the CPC
scores. Prior to training, 10 % of the patients in the con-
sidered training data were set apart and used for valida-
tion. Weights were updated using the remaining 90 % of
the data and the loss function on the validation data was
computed after each epoch. Aiming to limit possible over-
fitting, dropout layers are used during training before each
LSTM layer [10]. These layers are set so that only 50 %
of the weights, randomly chosen, are updated during each
epoch. For testing, we used the model obtained after the
epoch that resulted in the lowest cost function over the val-
idation part of the training data.
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Training Validation Test Ranking
0 0.045 0.025 36/36

Table 2: True positive rate at a false positive rate of 0.05
(the official Challenge score) for our final selected entry
(team Oldenburg), including the ranking of our team on
the hidden test set.

3.2. Results

The performance in terms of Challenge Score, i.e., true
positive rate at a false positive rate of 0.05, is presented in
Table 2. It appears that the proposed method only achieved
a score of 25 on the hidden test set, ranking last out of the
36 submissions that managed to submit a successful entry.
The performance in terms of the other metrics available in
the evaluation tools provided by the challenge organizers,
computed on the training set, are presented in Table 3.

4. Discussion and Conclusions

The proposed method uses time-varying features as in-
put to a small-sized RNN based on LSTM cells. The fea-
tures are computed using only 4 of the available EEG elec-
trodes. The combination of a small amount of electrodes
with a small sized model could make the method beneficial
for a wide range of applications. Unfortunately, the perfor-
mance measured in the scope of the Challenge appear dis-
appointing. Tuning of parameters and better channel selec-
tion might improve the performance but some weaknesses
inherent to the method can anyway be noted.

The features are extracted from the averaged input of
electrodes. Even with a more beneficial electrode selec-
tion, this would still result in the spatial information be-
ing lost before feature extraction. Real data often contains
missing data and the proposed method can still provide a
prediction if this is the case. However, the chosen com-
bination of signal padding and masking layer ignores the
time at which the data is missing. As signals recorded at
the time of prediction can be expected to be more meaning-
ful than those recorded days prior, this may have a detri-
mental impact on the prediction.

Further analysis and comparisons with the other contri-
butions to the Challenge will be great assets to improve the
current performance.
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Challenge Score 0.05
Outcome AUROC 0.30
Outcome AUPRC 0.52

Outcome Accuracy 0.67
Outcome F-measure 0.63

CPC MSE 3.15
CPC MAE 1.48

Table 3: Results obtained using 5-fold cross-validation on
the training set, using all metrics available in the evaluation
tools provided by the challenge organizers.
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